

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 17.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let \mathcal{H} be a Hilbert space. Let V any closed subspace of \mathcal{H} ; recall the definition of V^\perp as

$$V^\perp := \{f \in \mathcal{H} \mid \langle g, f \rangle = 0 \ \forall g \in V\}. \quad (1)$$

We saw in class that the Hilbert space \mathcal{H} can be decomposed as $\mathcal{H} = V \oplus V^\perp$, meaning that $V \cap V^\perp = \{0\}$ and that for any non-zero $f \in \mathcal{H}$ there exists a unique element $f_V \in V$ such that $f - f_V \in V^\perp$. Define $P_V f := f_V$; from the uniqueness of f_V this is a well defined linear mapping.

a Prove that $P_V^2 = P_V = P_V^*$.

b Use **a** to prove that P_V is bounded and if $V \neq \{0\}$ then $\|P_V\| = 1$.

c Prove that if V_1 and V_2 are two closed subspaces of \mathcal{H} then¹

$$V_1 \perp V_2 \iff P_{V_1} P_{V_2} = 0. \quad (2)$$

Proof. We first prove that $P_V^2 = P_V$. To prove this is enough to notice that if $f \in V$ then $P_V f = f$. Indeed, let $g := f - P_V f$. Then by definition $g \in V^\perp$. On the other hand, both f and $P_V f$ are in V , therefore $g \in V \cap V^\perp = \{0\}$ and this implies $P_V f = f$. Now from the fact that $P_V f \in V$ for any $f \in \mathcal{H}$ we conclude that $P_V^2 f = P_V f$.

To prove that $P_V^* = P_V$, first notice that we have the trivial identity $\text{id} = P_V + (\text{id} - P_V)$. Moreover, by definition of P_V and from the decomposition $\mathcal{H} = V \oplus V^\perp$ we get that $(\text{id} - P_V)(\mathcal{H}) \subseteq V^\perp$. Consider now $f, g \in \mathcal{H}$. We then have

$$\begin{aligned} \langle g, P_V^* f \rangle &= \langle P_V g, f \rangle \\ &= \langle P_V g, P_V f \rangle + \langle P_V g, (\text{id} - P_V) f \rangle \\ &= \langle P_V g, P_V f \rangle \\ &= \langle g, P_V f \rangle - \langle (\text{id} - P_V) g, P_V f \rangle \\ &= \langle g, P_V f \rangle. \end{aligned}$$

From the fact that this is true for every $f, g \in \mathcal{H}$ we get that $P_V^* = P_V$.

To prove **b** for any $f \in \mathcal{H}$ we get that

$$\begin{aligned} \|f\|^2 &= \langle f, f \rangle \\ &= \langle P_V f, f \rangle + \langle (\text{id} - P_V) f, f \rangle \\ &= \langle P_V f, P_V f \rangle + \langle (\text{id} - P_V) f, (\text{id} - P_V) f \rangle \\ &= \|P_V f\|^2 + \|(\text{id} - P_V) f\|^2. \end{aligned}$$

¹We denote with \perp the condition of two subspaces of an Hilbert space \mathcal{H} of being orthogonal, i.e., V_1 is orthogonal to V_2 , or $V_1 \perp V_2$ if and only if for any $(f, g) \in V_1 \times V_2$ we have $\langle f, g \rangle = 0$.

From this we can deduce that P_V is bounded and that $\|P_V\| \leq 1$. If V is non empty, let $f \in V$, $\|f\| = 1$; then $\|P_V f\| = \|f\| = 1$ and this implies that $\|P_V\| = 1$.

To prove **c** first suppose $V_1 \perp V_2$ and $f \in V_2$. By definition of P_{V_1} we have that $f - P_{V_1} f \in V_1^\perp$; then we get that

$$P_{V_1} f = f - (f - P_{V_1} f) \in V_1 \cap V_1^\perp \Rightarrow P_{V_1} f = 0.$$

Consider now $f \in \mathcal{H}$; given that $P_{V_2} f \in V_2$ we can deduce that $P_{V_1} P_{V_2} = 0$.

Suppose now that $P_{V_1} P_{V_2} = 0$. Consider now $f \in V_1$, $g \in V_2$. Then we have

$$\langle f, g \rangle = \langle P_{V_1} f, P_{V_2} g \rangle = \langle f, P_{V_1} P_{V_2} g \rangle = 0.$$

Given that f and g were generic this implies that $V_1 \perp V_2$.

□

Exercise 2

Let $\phi(t)$ and $\psi(t)$ differentiable functions on the Hilbert space \mathcal{H} , meaning that the limit

$$\frac{d\phi}{dt}(t) := \lim_{h \rightarrow 0} \frac{\phi(t+h) - \phi(t)}{h} \quad (3)$$

exists in the norm topology of \mathcal{H} for each $t \in \mathbb{R}$, and similarly for $\psi(t)$.

Prove that

$$\frac{d}{dt} \langle \phi(t), \psi(t) \rangle = \langle \frac{d\phi}{dt}(t), \psi(t) \rangle + \langle \phi(t), \frac{d\psi}{dt}(t) \rangle \quad (4)$$

Proof. First notice that (3) means that

$$\lim_{h \rightarrow 0} \left\| \frac{d\phi}{dt}(t) - \frac{\phi(t+h) - \phi(t)}{h} \right\| = 0.$$

In particular this implies that

$$\lim_{h \rightarrow 0} \|\phi(t+h) - \phi(t)\| \leq \lim_{h \rightarrow 0} |h| \left(\left\| \frac{d\phi}{dt}(t) - \frac{\phi(t+h) - \phi(t)}{h} \right\| + \left\| \frac{d\phi}{dt}(t) \right\| \right) = 0,$$

and therefore $\phi(t)$ is also continuous in the norm topology of \mathcal{H} , and similarly for $\psi(t)$.

Consider now (4); we get

$$\frac{d}{dt} \langle \phi(t), \psi(t) \rangle = \lim_{h \rightarrow 0} \frac{\langle \phi(t+h), \psi(t+h) \rangle - \langle \phi(t), \psi(t) \rangle}{h}.$$

The term inside the limit can be decomposed as follows:

$$\begin{aligned}
\frac{1}{h} (\langle \phi(t+h), \psi(t+h) \rangle - \langle \phi(t), \psi(t) \rangle) &= \\
&= \frac{1}{h} (\langle \phi(t+h) - \phi(t), \psi(t+h) \rangle + \langle \phi(t), \psi(t+h) - \psi(t) \rangle) \\
&= \left\langle \frac{\phi(t+h) - \phi(t)}{h}, \psi(t+h) - \psi(t) \right\rangle + \left\langle \frac{\phi(t+h) - \phi(t)}{h}, \psi(t) \right\rangle \\
&\quad + \left\langle \phi(t), \frac{\psi(t+h) - \psi(t)}{h} \right\rangle.
\end{aligned}$$

We now study the limit of these three terms. The first one can be bound completely, so we can apply Cauchy-Schwarz to get

$$\begin{aligned}
\lim_{h \rightarrow 0} \left| \left\langle \frac{\phi(t+h) - \phi(t)}{h}, \psi(t+h) - \psi(t) \right\rangle \right| &\leq \lim_{h \rightarrow 0} \left\| \frac{\phi(t+h) - \phi(t)}{h} \right\| \|\psi(t+h) - \psi(t)\| \\
&= \lim_{h \rightarrow 0} \left\| \frac{d\phi}{dt}(t) \right\| \|\psi(t+h) - \psi(t)\| = 0.
\end{aligned}$$

For the second term one can proceed as follows. Using the fact that $\phi(t)$ is differentiable and applying Cauchy-Schwarz again we get

$$\begin{aligned}
\lim_{h \rightarrow 0} \left| \left\langle \frac{\phi(t+h) - \phi(t)}{h}, \psi(t) \right\rangle - \left\langle \frac{d\phi}{dt}(t), \psi(t) \right\rangle \right| &\leq \\
&\leq \lim_{h \rightarrow 0} \left\| \frac{\phi(t+h) - \phi(t)}{h} - \frac{d\phi}{dt}(t) \right\| \|\psi(t)\| = 0.
\end{aligned}$$

Proceeding similarly for the third term we get the result. □

Exercise 3

Let \mathcal{H} be a Hilbert space. Consider A and B bounded self-adjoint operators on \mathcal{H} . Prove that $\frac{1}{i\hbar} [A, B]$ is self adjoint.

Proof. Recall that in the last exercise sheet we proved that $(AB)^* = B^*A^*$ and that $(\alpha A)^* = \bar{\alpha}A^*$ for any A, B bounded operators on \mathcal{H} and for any $\alpha \in \mathbb{C}$. We therefore get

$$\begin{aligned}
\left(\frac{1}{i\hbar} [A, B] \right)^* &= -\frac{1}{i\hbar} [A, B]^* = -\frac{1}{i\hbar} (AB - BA)^* = -\frac{1}{i\hbar} (B^*A^* - A^*B^*) \\
&= -\frac{1}{i\hbar} (BA - AB) = -\frac{1}{i\hbar} [B, A] = \frac{1}{i\hbar} [A, B].
\end{aligned}$$

□

Exercise 4

Consider a vector space V over \mathbb{C} , A, B, C linear bounded operators on V and $\alpha \in \mathbb{C}$.

- a** Prove that $[A, B + \alpha C] = [A, B] + \alpha [A, C]$.
- b** Prove that $[B, A] = -[A, B]$.
- c** Prove that $[A, BC] = [A, B]C + B[A, C]$.
- d** Prove that $[A, [B, C]] = [[A, B], C] + [B, [A, C]]$.

Proof. To prove **a** notice that

$$\begin{aligned}[A, B + \alpha C] &= A(B + \alpha C) - (B + \alpha C)A = AB - BA + \alpha AC - \alpha CA \\ &= [A, B] + \alpha [A, C].\end{aligned}$$

To prove **b** one can see that

$$[B, A] = BA - AB = -(AB - BA) = -[A, B].$$

To prove **c** we look at the right side to get

$$\begin{aligned}[A, B]C + B[A, C] &= (AB - BA)C + B(AC - CA) \\ &= ABC - BAC + BAC - BCA = [A, BC].\end{aligned}$$

To prove **d** we notice that

$$\begin{aligned}[A, [B, C]] + [B, [C, A]] + [C, [A, B]] &= \\ &= A(BC - CB) - (BC - CB)A \\ &\quad + B(CA - AC) - (CA - AC)B \\ &\quad + C(AB - BA) - (AB - BA)C = 0.\end{aligned}$$

This implies in particular

$$[A, [B, C]] = -[B, [C, A]] - [C, [A, B]] = [[A, B], C] + [B, [A, C]].$$

□