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Exercise 1

Let H be a Hilbert space. Let V any closed subspace of H; recall the definition of V' as
Vii={feH |{g,f)=0YgeV}. (1)

We saw in class that the Hilbert space H can be decomposed as H = V @ V1, meaning
that V n VL = {0} and that for any non-zero f € H there exists a unique element fy, € V
such that f — fyy € VL. Define Py f := fy; from the uniqueness of fy this is a well defined
linear mapping.

a Prove that P‘% =Py = Py.
b Use a to prove that Py is bounded and if V' # {0} then |Py| = 1.

¢ Prove that if V; and V4 are two closed subspaces of H then!

VilV, — Py, Py, = 0. (2)

Proof. We first prove that P2 = Py.. To prove this is enough to notice that if f € V then
Py f = f.Indeed, let g := f — Py f. Then by definition g € V. On the other hand, both
f and Py f are in V, therefore g € V. n V1 = {0} and this implies Py f = f. Now from
the fact that Py f € V for any f € H we conclude that P‘%f =Pyf.

To prove that Py = Py, first notice that we have the trivial identity id = Py + (id —Py).
Moreover, by definition of Py and from the decomposition H = V @ V1 we get that
(id —Py) (H) < V*. Consider now f, g € H. We then have

(9, Pvf)={Pvg, [
= (Pyg, Pvf)+{Pyg,(id—Pv) f)

=(Pyg,Pvf)
={g, Pvf)—<(d—Pv)g, Pv )
=g, Pvf).

From the fact that this is true for every f, g € H we get that Py = Py .

To prove b for any f € H we get that

117 =<
=Py f, f)+<{Gd-Py) [, f)
= (Pyf,Pyfy+<{(id—Py) f,(id—Py) )
= [Py £I? + | (id = Py) £]*.

"We denote with L the condition of two subspaces of an Hilbert space H of being orthogonal, i.e., V3
is orthogonal to Va2, or Vi L V5 if and only if for any (f,g) € Vi x V2 we have {f,g) = 0.



From this we can deduce that Py is bounded and that |Py|| < 1. If V is non empty, let
feV, |f| =1; then |Pyf| = | f| =1 and this implies that |Py| = 1.

To prove c first suppose Vi L V3 and f € V5. By definition of Py, we have that f — Py, f €
Vit; then we get that

Puf=f—(f—Pnf)eVinVi"= Py, f=0.

Consider now f € H; given that Py, f € Vo we can deduce that Py, Py, = 0.

Suppose now that Py, Py, = 0. Consider now f € V1, g € V5. Then we have

(fr9) =<{Pn [, Png) = {f, Py Prg) = 0.

Given that f and g were generic this implies that Vi 1 V5.

Exercise 2

Let ¢ (t) and 1 (t) differentiable functions on the Hilbert space H, meaning that the limit

49 o 0L ) =0 ()
ar h 3)

exists in the norm topology of H for each ¢ € R, and similarly for 1 ().

Prove that

d d¢ dy
70,0 (1) =< (), v () + <o (), - () (4)
Proof. First notice that (3) means that
. [ do ¢(t+h)—o()
pm 2 O = h H =0

In particular this implies that

fim 1o ¢-+-1) — o0 < Jim ] (|5 (0 - 2EH=20 4 98 ) o

and therefore ¢ (t) is also continuous in the norm topology of H, and similarly for v ().

Consider now (4); we get

d O R) (B~ (B ), ¥ (1)
L6 (), (1) = lim ; .



The term inside the limit can be decomposed as follows:

%(<¢(t+h),¢(t+h)>—<¢(t)ﬂ/f(t)>) ~

= %(<¢>(t+h)—d>(t),w(t+h)>+<¢(t),¢(t+h)—w(t)>)
¢(t+h)—9(t) ¢(t+h)—o(t)

= (PR (14m) — () + (EEE R
+<¢(t),¢(t+h}1_w(t)>.

We now study the limit of these three terms. The first one can be bound completely, so
we can apply Cauchy-Schwarz to get

¢(t+h)—o() ¢(t+h)—o()
h

h

lim [{
h—0 h—0

,w(t+h)—w(t)>|<lim

(e +m -0 0]

d
= lim ‘d‘f (t)‘ [ (t+h) = (t)] = 0.

For the second term one can proceed as follows. Using the fact that ¢ (¢) is differentiable
and applying Cauchy-Schwarz again we get

el -6 o
ti | EEERIZ2O ) - 2 )0 1) <
< iy | 2= S ) o ] <0

Proceeding similarly for the third term we get the result.

Exercise 3

Let H be a Hilbert space. Consider A and B bounded self-adjoint operators on H. Prove
that - [4, B] is self adjoint.

Proof. Recall that in the last exercise sheet we proved that (AB)* = B*A* and that
(aA)* = @A* for any A, B bounded operators on H and for any o € C. We therefore get

1 * 1 1 1
(14B1) =~ [ABY =~ (4B - BAY = - (5 B?)
_ Y a-aB) = -1 a- Lia B
ik GRS Rt



Exercise 4

Consider a vector space V over C, A, B, C linear bounded operators on V and « € C.

a Prove that [A, B + oC] = [A,B] + a[A,C].

b Prove that [B, A] = —[A, B].

c Prove that [A, BC| = [A,B|C + B[A,C].
[A

d Prove that [A, [B,C]] = [[4,B],C] + [B, [A,C]].

Proof. To prove a notice that
[A,B+aC]=A(B+aC)— (B+aC)A=AB— BA+ aAC —aCA
=[A,B]+«a[A,C].

To prove b one can see that

[B,A] = BA— AB = — (AB — BA) = — [A, B].

To prove c we look at the right side to get

[A,B]C + B[A,C] = (AB — BA)C + B (AC — CA)
— ABC — BAC + BAC — BCA = [A, BC].

To prove d we notice that

[A, [B,C]] + [B,[C, A]] + [C,[A, B]] =
— A(BC —CB)— (BC —CB) A
+B(CA— AC) — (CA— AC) B
+C(AB—BA)— (AB—BA)C =0

This implies in particular

[Av [B7C]] == [B7 [Cv A]] - [Cv [AvB]] = [[A7 B] ) C] + [B7 [A,C]] :



